Int. J. Solids Structures Vol. 27, No. 6, pp. 671-680, (991 0020-7681,91 $3.00+ .00
Printed 18 Great Bnuun, Pergamon Press plc

A SIMPLE TECHNIQUE FOR FINDING EFFECTIVE
ELASTIC CONSTANTS OF CRACKED SOLIDS FOR
ARBITRARY CRACK ORIENTATION STATISTICS

C. M. SaYERs
Koninklijke/Shell Exploratie en Produktie Laboratorium. 2288 GD Rijswijk ZH,
The Netherlands

and

M. KaCHANOV
Department of Mechanical Engineering, Tufts University, Medford. MA 02155, U.S.A.

(Received U August 1989 ; in revised form 12 January 1990)

Abstract—The effective elastic properties of cracked solids are anisotropic if the cracks have
preferred orientations. In this paper a simple scheme for evaluating the elastic stiffness tensor for
an arbitrary orientation distribution of cracks at finite crack densities is presented. The approach
is based on a tensorial transformation of the effective elastic constants for isotropic orientation
statistics through the use of a second-order crack density tensor.

[. INTRODUCTION

The effective clastic propertics of cracked solids are anisotropic if the cracks have preferred
oricntations. Such a situation is common in rocks, for example, where preferred orientations
reflect the stress history of the rock (stress-induced anisotropy). In the approximation of
non-interacting cracks the caleulation of the effective clastic properties is straightforward
for arbitrary oricntation statistics : cach crack is assumed to be subjected only to the
externally applied stress ficld ¢ and the contributions to the overall strain from individual
cracks are simply summed up. Such results, however, are limited to small crack densitics.
For higher crack densitics when crack interactions cannot be neglected, O'Connell and
Budiansky (1974) and Budiansky and O’Connell (1976) proposed a sclf-consistent scheme
for the calculation of the elastic stiffness tensor for random crack oricntation statistics. In
this method the effect of crack interactions is included by assuming that each crack is
embedded in & medium with the effective stiffness of the cracked body. This scheme was
extended by Hoenig (1979) to crack distributions for which the overall elastic stiffness
tensor is transversely isotropic. Bruner (1976) and Henyey and Pomphrey (1982) have
pointed out that the self-consistent scheme may overestimate the crack interactions and
have proposed an alternative, differential scheme in which the crack density is increased in
small steps and the elastic properties are recalculated incrementally. Finally, Hudson (1980,
1981, 1986) has given results for both randomly orientated and parallel cracks that are correct
to second order in the crack density ; his results, however, are restricted to moderately small
crack densitics as shown below. Another method has recently been proposed by Kachanov
(1987a) for finding the effective propertics for solids having interacting cracks with arbitrary
crack interactions that yiclds accurate analytical results up to high crack densities. However,
these results arc obtained for each given arrangement of cracks rather than in statistical
terms. Thus the only schemes available at present for calculating the effective elastic
constants at finite crack densitics are the sclf-consistent and differential schemes.

Both of these schemes are difficult to implement in the case of arbitrary crack orien-
tation statistics, since they are based on placing an individual crack into an anisotropic
*effective™ matrix and therefore require as input the solution for a single crack in an
anisotropic medium, with arbitrary orientation of the crack with respect to the axes of
anisotropy. Such solutions are not easily obtainable in analytic form, particularly in the
3-D case. A further problem is the necessity of specifying a priori the type and orientation
of the effective anisotropy : this may be obvious for the simplest orientation statistics such as
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parallel cracks but is far less obvious for more complex orientation distributions, a simple
example being two sets of non-orthogonal cracks with different densities. Another problem,
in the case of the differential scheme, is path dependence: the results may depend on the
order in which cracks of different orientations are introduced into the medium.

In this paper a very simple scheme for finding the effective elastic properties of solids for
arbitrary orientation statistics at finite crack densities is presented. Besides its computational
simplicity the main advantage of this scheme when compared with those mentioned above
is that an a priori knowledge of the symmetry axes of the elastic tensor of the cracked
medium is not required. The approach is based on a tensorial transformation of the effective
elastic constants for randomly oriented penny-shaped cracks, which are assumed to be
known, to the arbitrary orientation statistics through the use of a second-order crack density
tensor « characterizing the averaged geometry of the crack array (Kachanov, 1980, 1987b;
Vakulenko and Kachanov, 1971).

2. EXISTING APPROACHES

The elastic constants for an isotropic homogeneous material containing elliptical cracks
can be derived from the solution for elliptical cavities as described below. The results will
then be specialized to the case of circular cracks for which a description of the elastic
constants in terms of the second-order crack density tensor « used in Section 3 is appropriate.
As is well known (Hill, 1963), the average strain tensor in the solid for a homogeneous
material of volume ¥ containing arbitrary cavities is

1

. i
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where V, is the volume of the solid, S, is the surfuace of the rth-cavity lying within V and
£, is the macroscopic strain dcfined by

&

|
=3 L (u;n;+u;n;)dSs.

Here S, is the solid portion of the exterior boundary. The macroscopic strains &, are related
to the macroscopic stress components 6;, (defined by ,; = (1/¥) [, a,,dV') by the effective
compliance tensor M, ;!

£ = Mijklakl'

Since ¢, within the solid is given by &; = M0, where M, is the compliance tensor of
the solid, eqn (1) gives

- 6 = -
MG = MGy ViV,+ Nyubiy

where

. l
Niﬂdo-ld = - i—’;‘ z s (“,‘nl"{"ujn,') dS.

~r

For an ellipsoidal cavity with principal axes 2a > 2b > 2c¢ it is convenient to introduce a
set of axes Ox',x5x3 with origin at the centre of the ellipsoid and Ox’, Ox} and Ox} along
the a, b and c axes, respectively. In the limit c/a « 1, ¢/b « 1 (flat cracks) the above integral
may be evaluated by taking the integration over the surface S, of the crack and replacing
displacements by displacement jumps across S, while putting ¥, = V. Hence in the crack
reference frame the contribution of the rth-crack to & is:



Elastic constants of cracked solids 673
(I/BV)J; ([uln)+ [wln) dS = Nijubi ()

where the bracket [ ] denotes jump discontinuities in the displacement. In this limit,
N, =AMy, the change in M, due to the presence of the cracks.

Under the action of uniform far stresses, an arbitrary ellipsoidal cavity characterized
by semi-axes «. b. ¢ in an anisotropic material deforms into another ellipsoid (Eshelby, 1957).
Thus the crack face displacements will also be ellipsoidal, so that the cavity displacements «;
are

u; = Ba(l —xi/a’ —x7'[b*)"*

(Hoenig, 1978) where the §, are dimensionless parameters. For a penny-shaped crack of
radius & in an isotropic medium, substitution of this result in eqn (2) gives:

N’JJJS = l6(‘—V:)GJ/3E
Ny = Noazs = 8(1=v)a*/BEQ-v)), 3)

all other components of N, being zero. E and v are the Young's modulus and Poisson’s
ratio of the matrix material, and the expressions for the f§; derived by Hoenig (1978) have
been used.

In the self-consistent method each crack is assumed to be embedded in a medium with
the cffective stiffness of the crucked medium. E and v in eqn (3) are thercfore replaced by
E and ¥, and the results are averaged over all crack oricntations after transforming the N Gkt
back to the unprimed system, For an isotropic random distribution of cracks this gives:

E/E = 1~ 16p(1 - 7*)(10—=37)/(45(2—V))
p =45(v—"Q2-/(16(1 —7*)(10v - ¥(1 +3¥)))

where p = Na’/V (N is the number of cracks in ¥) is the crack density. This result was
given by O’Connell and Budiansky (1974) and Budiansky and O°Connell (1976).

The differential scheme is obtained by adding the changes N, in an incremental
fashion and recalculating the matrix constants M, at each increment ; this results in a set
of two differential equations for £ and v as functions of p (Bruner, 1976; Henyey and
Pomphrey, 1982).

Figure | compares the predictions of the self-consistent and differential schemes for
isotropic crack orientation statistics. Figure 1 also shows the results obtained by Hudson’s
scheme (1981) which is correct to second-order in the crack density. Note that the latter
scheme clearly favours the differential scheme at small to moderate crack densities. A notable
feature of the self-consistent scheme is the prediction of a vanishing elastic stiffness at a
crack density p = na® = 9/16. O'Connell and Budiansky (1974) and Budiansky and O’Con-
nell (1976) argue that the vanishing of the elastic stiffnesses corresponds to a loss of
coherence of the solid produced by an intersecting crack network at a critical value of the
crack density parameter of 9/16. Bruner (1976) argues that since the sclf-consistent method
treats the material as containing non-intersecting cracks in an clastic continuum, it cannot
be expected to predict a loss of coherence. Recent calculations (Charlaix, 1986) have shown
that the percolation threshold of a 3-D assembly of widthless discs is given by p = 0.185.
Thus the crack density at which the elastic stiffnesses vanishes in the self-consistent scheme
is much higher than the density at which a percolating crack network first forms. This can
be expected since the formation of a percolating network does not necessarily mean that
the solid loses elastic stiffness,

The extension of the self-consistent scheme to crack distributions for which the effective
elastic stiffness is transversely isotropic has been carried out by Hoenig (1979). Figure 2
compares the sclf-consistent and differential schemes for the case when the crack normals
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Fig. 1. (1) The normalized Young's modulus £/E and (b) the normalized shear modulus G/G for
an isotropic distribution of penny-shaped cracks in a medium with Poisson’s ratio 0.25, computed
using the self-consistent, differential and second-order Hudson schemes. Also shown is the result
for non-interacting cracks.

are all parallel to Ox;. In this case it follows from eqn (3) that the only elastic compliances
altered by the presence of cracks are M,y = 1/E, and My 3 = M,3a, = 1/4G in the
notation of Hoenig (1979). It is seen from Fig. 2 that there is no finite crack density at
which £ or G as defined above vanish as would be expected from the vanishing probability
of crack intersections for parallel cracks. The Hashin-Shtrikman upper bound for parallel
cracks has been given by Laws and Dvorak (1987) and coincides with the non-interacting
result shown in Fig. 2. Both the self-consistent and differential schemes give elastic stiffnesses
that fall below the upper bound in agreement with the works of Milton (1984) and Norris
(1985), who find that both the self-consistent and ditferential schemes are realizable in the
sense that a microstructure can be specified having the elastic constants given by either of
the schemes.

The elastic constants for cracks with normals all parallel to a given plane but otherwise
randomly distributed have also been evaluated in the self-consistent scheme by Hoenig
(1979). Despite the high probability for crack intersections for this orientation statistics,
no finite crack density was found for which the effective elastic constants vanish, in contrast
with the case of isotropic crack distributions. This inconsistency makes the applicability
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Fig. 2. (a) The normalized Young's modulus £/E and (b) the normalized shear modulus G/G in the
notation of Hoenig (1979) for a distribution of parallel penny-shaped crucks in a medium with
Poisson’s ratio 0.25, computed using the self-consistent, differential and second-order Hudson
schemes. Also shown is the result for non-interacting cracks and the scheme presented in this paper.

of the self-consistent scheme to orientation statistics other than perfectly parallel cracks
somewhat questionable. Furthermore, since the results of Hudson (1981), shown in Fig. 1,
are correct to second-order in p, they support the use of the differential scheme rather than
the sclf-consistent scheme. For these reasons we use the predictions of the differential
scheme as input to the method described below.

3. USE OF THE CRACK DENSITY TENSOR

Following Vakulenko and Kachanov (1971) and Kachanov (1980, 1987b) we intro-
duce a symmetric second-order crack density tensor a defined by :

a=(1/V)} ynn,

where V is the volume of averaging, n, is the unit normal to the rth-crack and v, is a
weighting factor characterizing the contribution of the rth-crack to « and depending on
the physical problem of interest. In the case of effective elastic properties y, = a’, where q,
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is the radius of the rth-crack for a 3-D solid with penny-shaped cracks (for a 2-D solid
with slit-like cracks, 7, = /7, where /, is the semi-length of the rth-crack and ¥ should be
changed to the area of averaging). Note that %, = tr z coincides with the conventional scalar
crack density p = n{a®) so that a represents a tensorial generalization of p accounting for
the crack orientation statistics.

The effective elastic compliances M, can be derived from an elastic potential f:

sij - (?f/@G'U = 1"[,1'[(10];{

so that the problem is reduced to finding f. We assume that, in addition to being a function
of stress a. f is also a function of «. If the material is isotropic in the absence of cracks. /'
will be an isotropic function of ¢ and a, i.e. will not change if both ¢ and = undergo the
same orthogonal transformation. This implies that ¢ and x will enter f through their
invariants only (including the simultaneous ones). Since the stress—strain relations are linear
at constant a, f (e, 2) must be quadratic in ¢. The resulting expression for f comprises nine
terms representing all independent combinations of the invariants (Kachanov 1980, 1987b;
Vakulenko and Kachanov, 1971):

fle. @) =a(tray +astr (e @)+ tratr (e a)+n.tr(e 6 a)
+13(tr (g @)+ (tr (o a ) +ystricro-a-a)

o tretr{eca- )+ tric-a)tr{c-a-a) (4)

where a dot indicates one index contraction: (o a),, = 6,4, and the scalar coeflicients o,
and »; are, generally, functions of the invariants of a. It can be shown, however, that w,
and @, are constants not depending on a. Indeed, the elastic compliance of a medium
with cracks M, (@) can be represented as the sum of the matrix compliance M), and
the contribution from the cracks AM, = AM, (). Therefore f(o.a) = lo:M:o =
le:M":a+ lo:AM g, where the first term, representing the clastic potential in the
absence of cracks, must coincide with the first two terms of eqn (4). w, and @, are there-
fore constants not depending on a and are given by w, = —v,/2E,, w, = (1 +v,)/2E,.
where v, and £, are the Poisson’s ratio and Young’s modulus in the absence of cracks.

4. TENSORIAL LINEARIZATION OF f{a,a)

As a simple scheme we propose a tensorial linearization of f (g, a) in «, so that
S(e.a) =M, yo,0 = MDyo,00+n tratr(c-2)+n,tr(s-c a) (%)

where 5, and 5, are, generally, functions of the invariants of a. In the following, we assume
that », and #, are functions of the first invariant p = tr a of a, the orientational dependence
of the effective elastic properties being given by the tensorial structure of the last two terms
of eqn (5). For the cuse of non-interacting cracks 7, and #, are constants and the linearized
eqn (5) is the exact representation of the elastic potential for 2-D crack arrays and a good
approximation for 3-D arrays (Kachanov, 1980). In the framework of the model (4) the
eflective clastic properties are always orthotropic, with the axes of orthotropy coinciding
with the principal axes of «; an additional simplification obtained in reducing cqn (4) to
(5} is that the orthotropy is of a special type: (a) it is characterized by six (rather than nine)
independent constants and (b) the variation of the elastic moduli with orientation is
described by an elliptical surface rather than one of fourth order. Note that analysis (Sayers,
19884a.b) of ultrasonic wave velocity measurements in rocks with an anisotropic cruck
distribution (Thill er «l., 1969 ; Nur and Simmons, 1969) shows the fourth-order variation
of the elastic modulus to be an order of magnitude smaller than that of second-order even
for rather high crack densities. These observations support the simple structure of eqn (5)
for the case of interacting cracks.
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In a coordinate system with axes coincident with the principal axes of xz the non-
vanishing elastic compliances are M,,,, and M,,,,. which are given by

Moy = A[g‘,m, + (2, + q;)dtm(sp,, + (’12/2)(1,,,, + %)
Moppey = M gy + 11 (%55 +2,) + 212,00 (6)

where the indices p and ¢ are not to be summed over.

m = n{p) and i, = n,(p) may be specified by using the elastic compliances obtained
with the differential scheme for an isotropic distribution of cracks. The model then yields.
in a very simple way, the effective elastic constants for a solid with arbitrary orientation
statistics ; these results can be compared with the available results for non-random crack
orientations obtained by other methods.

4.1. Randomly orientated cracks
For an isotropic (random) crack array a = (tr a/3)I = pl/3, where p = na’ is the
conventional scalar crack density and [ is the unit tensor; then:

AM 1y = AMys: = AM 53,3 = 2(n, +12)p/3
AM 202 =AM i3y = AM 5 = map[3
AM 12 =AM 3 = AM 3355 = 20, p/3.

Hence, if the dependence of the two effective elastic constants M, and My, 0on pis
known for the case of isotropic crack orientation statistics, the cocflicients 5, and 5; can
be specified as functions of p.

The functions 7,(p) and 5,(p) arc thus determined by the choice of the input for the
case of isotropic crack orientation statistics. Hence, the choice of model for this case will
affect the predictions of our model for other orientation statistics. For reasons discussed in
Section 2 we use the results for the differential scheme as input.

4.2, Perfectly aligned cracks
For perfectly aligned cracks with normals along Ox;, a;, = a,; =0, a;; = p and
therefore :

AM =AMy = AM 3 = AM 15, =0
AM 335 = 201, +12)p

AM 332y = AM ;5 = nyp/[2

AM 13 = AM 55 = np.

Figure 2 compares the predictions of the scheme presented above for perfectly aligned
cracks with the moduli calculated directly by the differential scheme. A comparison of the
results with those of the Hudson (1980) scheme (which are correct to second order in the
crack density) also shown in Fig. 2 shows the scheme to give a substantial improvement
over the non-interacting scheme.

4.3. Cracks with normals lying randomly in parallel planes

Figure 3 shows the predictions of the scheme for the case of a crack distribution for
which the crack normals lie in plancs parallel to the x,.x, plane. In this case the only elastic
constants altered by the presence of cracks are My, = My = VE, My\3, = My, =
1/4G and M ,,, = 1/4G* in the notation of Hoenig (1979). This case was previously treated
by Hoenig (1979) in the self-consistent scheme and could only be evaluated numerically.
By contrast, the present scheme gives a very simple result:
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Fig. 3. The normalized Young's modulus £/E, the normalized shear modulus G/'G and the nor-

malized shear modulus G*/G in the notation of Hoenig (1979) for a distribution of penny-shaped

cracks with normals randomly distributed in planes parailel to the v,x, plane in a medium with
Poisson’s ratio 0.25, computed using the scheme presented in this puper.

AM =AM ;1ss
AM ;=0

AM 32 =n2p[2
AM 335y = AM 55,
AM 2 =1np
AM 1y =AM a3,

In agreement with Hoenig (1979), G/G > G*/G

(mi+n)e

n:p/4

np/2.

> E/E (Fig. 3).

4.4. Two sets of non-orthogonal cracks with different densitics

The use of the present scheme for other crack orientation statistics is equally simple.
As an example, consider two scts of non-orthogonal cracks with different densities. The
treatment of such a case by the differential scheme is difficult since it requires the knowledge
of the solution for one crack in an anisotropic matrix with an acute angle between the crack
normal and the axes of anisotropy. The sclf-consistent scheme requires, in addition, an ¢
priori knowledge of the orientation of the axes of anisotropy. Denoting by n, and n, the
normals to set ¢ and b with densities p, and p,, the crack density tensor a = p a,n, + p.n,n,,.
It is convenient to choose a coordinate system with v, along n,xn, and x, and x, in the
n,n, planc. Choosing x, and x, as the principal directions of &, we find 2, | = A4/2, 2, = B/2,

where

A= (p,+p)+ {(pa+ps) —8p,pysin’ p}
B = (p,+ps)—{(pa+ps)’ —4p.pysin’ ¢} "*

and ¢ is the angle between n, and n,. This gives

[

AM = (1 +n2)4
AM 55 =(n,+n2)8

AI"’J}J) = 0

AM 212 = 1n2p/2
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Fig. 4. The normalized elastic stiffnesses for two sets of non-orthogonal cracks with densities
o, = 3p/S. p, = 2p/5 and ¢ = 60" in a medium with Poisson’s ratio 0.25 computed using the scheme
presented in this report. The subscripts refer to the principal axes of the crack density tensor x.

AM 33 =1n,4/4
AM 5>y =n,B/4
AM 2 =np
AM yyv=m4]2
AM 133y =1, B/2.
As a numerical illustration, consider the case where ¢ = 607, p, = 3p/S. p, = 2p/S. The

resultant clastic constants, in the notation E, = 1/M ., Ey = /M3, G5 = 1/4M 5.,
G‘n = |/4A/1”_\|, Gz; = l/4AfI:3:3. dre shown iﬂ Flg. 4,

5. DISCUSSION AND CONCLUSIONS

A simple scheme for evaluating the elastic stiffness tensor for arbitrary orientation
statistics at finite crack densitics has been presented. The scheme is based on a tensoriul
transformation of the effective elastic constants for randomly orientated cracks through
the use of a second-order crack density tensor a churacterizing the averaged geometry of
the cruck array. The comparison of the scheme with the second-order approach of Hudson
shows the scheme to be a considerable improvement on the non-interacting approach whilst
it maintains the computational simplicity of that approach. In particular, an a priori
knowledge of the symmetry axes of the elastic tensor of the cracked medium is not required.

The scheme proposed allows genceralizations and refinements. For example, more than
two of the coeflicients 7,,..., 7, may be retained and determined, as functions of p, by
using known results for random, parallel and other crack orientation statistics. These results
may not be very reliable at high crack densitics, however, so that their use may not
necessarily improve the accuracy of the scheme. In addition, such refinements will result in
extra terms in the elastic potential (5) thus making it fess simple,
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